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Introduction:  

Patient motion continues to be a major problem in MRI, despite tremendous advances using 

post-processing or prospective correction strategies1,2, and more recently deep learning (DL).3-5 

While encouraging, these studies represent a direct application of existing network architectures 

to relatively minor motion artifacts, leaving much room for further optimizations. We propose a 

two-stage and multiple-loss based MRI motion correction network (MC-Net). In stage 1, MC-

Net was trained with an L1-loss function to drive the network output to the reference (motion-

free images).  Stage  2 was then trained to minimize the L1 and Total Variation (TV) of the 

residual images (output-reference). The goal was to suppress overall motion artifacts which often 

affect tissue boundaries the most. 

 

Methods  

Simulation of Motion Corrupted Images 

78 motion trajectories of 128 points each were synthesized from in-vivo head movements 

measured with PACE fMRI1 (all <2mm/2°, each with 6DOF), and multiplied by eight. 

Trajectories were offset such that the k-space center remained in the origin point. 

The source images were 3D MP-RAGE scans of 52 subjects (1mm isotropic; 256×256×160) 

without motion artifacts. For each of the 78 trajectories, the motion-corrupted k-space trajectory 

was calculated2 (resolution 128×128×128) and sampled with non-uniform FFT (NuFFT)6. Ten 

sagittal slices were extracted from the resulting motion-corrupted 3D datasets (5mm increments; 



total 780 slices per subject). Two simulations were performed: in-plane rotations only, and all in-

plane parameters (translations, z-rotation). After removing boundary slices, the final dataset 

contained 41,750 slices (128×128).  This was divided into a training set (35 subjects/28,800 

slices), validation set (5 subjects/4,320 slices), and test set (12 subjects/8,630 slices).  

MC-Net  

Fig. 1 shows the architecture of MC-Net, which was derived from UNet7. The major novelty is 

the hybrid loss function L, which combines a L1-loss and Total Variation loss (TV)8:  

L =  alpha ∗ L1 +  beta ∗ TV                                      (1) 

𝑇𝑇𝑇𝑇 =  ∑ ((𝐼𝐼(𝑖𝑖 + 1, 𝑗𝑗) − 𝐼𝐼(𝑖𝑖, 𝑗𝑗))2 + (𝐼𝐼(𝑖𝑖, 𝑗𝑗 + 1) − 𝐼𝐼(𝑖𝑖, 𝑗𝑗))2)1.25 
𝑖𝑖,𝑗𝑗                      (2) 

where I is a corrupted image; i, j are row/column indices.  

The second novelty is the two-stage training strategy. Stage 1 uses L1-loss only [set 

(alpha,beta)=(1,0)] to suppress the overall motion-induced artifact. The pre-trained stage 1 model 

is then fine-tuned in stage 2 by turning on the TV-loss component [(alpha, beta)=(1, 1)]; this 

penalizes boundary artifacts in addition to overall artifacts.   

For comparison with the two-stage MC-Net (abbreviated “L1+TV-ft”), single-stage models 

trained with the L1-loss5 and L1 + TV loss only were also implemented (“L1” and “L1 + TV” 

models). All models were trained in 100 epochs, using the Adam optimization method9. The 

structural similarity index measure (SSIM) with the “clean” image as reference10 was used to 

quantify the performance of each method.  The quality of images was also assessed visually by 2 

experienced readers.  

 

Results  

Representative results of L1, L1+TV, and L1+TV-ft are shown in Fig.2 (rotation only artifact) 

and Fig.3 (rotation plus translation). All DL methods improved image quality, but the MC-Net 

was particularly effective for severe motion artifacts (Fig.3c).  

Fig. 4 compares the SSIM (mean±std) for various models. The proposed 2-stage L1+TV-ft 

method improved the image quality slightly better than conventional approaches, both for the 

rotation only and rotation+translation models. 

 

Fig. 5 shows that the SSIM decreases with the motion magnitude (standard deviation across 128 

time points), from >0.8 for small motions (sub-mm/degree) to <0.5 for severe movements. The 



proposed 2-step L1+TV-ft approach improved image quality for motion magnitudes >1, but was 

especially effective for large rotation plus translation movements (Fig.4, center).  

 

Discussion:  

The MC-Net can correct motion artifacts in brain scans, in agreement with previous work3-5. We 

based our experiments on a customized UNet architecture7  because it is widely used in medical 

image analysis. Also, the UNet architecture is complex enough to perform the motion correction 

task, but also simple enough to demonstrate the merits of the proposed hybrid loss. 

Implementation using the open-source framework Keras11 with GPU acceleration might allow 

real-time motion correction. The proposed novel hybrid loss and two-stage training was slightly 

better in improving the final image quality than existing approaches, and was especially 

beneficial for correcting large rotational  and translational motion artifacts. 

 

Conclusion:  

We propose a simulation framework and DL method for motion correction in MRI. Since the 

method is data-driven and independent of data acquisition or reconstruction, it may be suitable 

for routine clinical practice. 

 

 



Figure 1. Customized UNet architecture. 

 

 

Figure 2: Rotation-only results.  The first row of each subfigure shows the clean image, raw 
corrupted image, motion correction result of L1, motion correction result of L1+TV, and motion 
correction result of L1+TV-ft. The second row of each subfigure shows the motion trajectory, 
and the respective residual images for each condition relative to the clean image, respectively. 



 

Figure 3: Rotation plus translation results.  The first row of each subfigure shows the clean 
image, raw corrupted image, motion correction result of L1, motion correction result of L1+TV, 
and motion correction result of L1+TV-ft. The second row of each subfigure shows the motion 
trajectory, and the respective residual images for each condition relative to the clean image, 
respectively. 

  



 

Motion Corrupted image L1 L1+TV L1+TV -t 
Rotation only  0.715 ± 0.093 0.738 ± 0.084 0.738 ± 0.085 0.743 ± 0.083 
Rotation plus translation 0.574 ± 0.126 0.640 ± 0.077 0.642 ± 0.076 0.645 ± 0.076 

 

Figure 4. SSIM (mean ± standard deviation) of the motion-corrupted images, and the output of 
the L1, L1 + TV, and L1+TV-ft methods, using “clean” source images as a reference. The 
proposed L1+TV-ft method performs slightly better than conventional approaches. 

 

 

 

 

 

Figure 5: Dependence of the SSIM relative to “clean” reference images on the motion 
magnitude (standard deviation of motion across 128 time points) for the proposed MC-Net 
method. The SSIM provides a measure of image quality (0 = lowest, 1 = highest). The MC-Net 
successfully reduced the effect of motion for all conditions (left and center). The quality of MC-
Net predication is similar for input images with only rotational motion and those with rotational 
plus translational motion (right). 

 

  



 

Synopsis  
Patient motion continues to be a major problem in MRI. We propose and validate a novel deep 
learning approach for the correction of large movements in brain MRI. Training pairs were 
generated using MRI data of high quality and corresponding synthesized images with artifacts 
based on real head movements. The images predicted by the proposed DL method from motion-
corrupted data have improved image quality compared with the original corrupted images in 
terms of a quantitative metric and visual assessment by experienced readers.  
 
Summary of Main Findings/Short Synopsis  
We developed a novel deep learning approach for correction of large movements in brain MRI. 
The proposed method improved image quality compared with the motion corrupted images in 
terms of a quantitative metrics and visual assessment by experienced readers.    
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